The preparation of 1,1-dimethyl-2,5-diphenyl-1-silacyclopentadiene

To date only three silacyclopentadiene derivatives have been prepared and characterized. 1,1,2,3,4,5-Hexaphenyl-1-silacyclopentadiene¹ (I) and 1,1-dimethyl-2,3,4,5tetraphenyl-I-silacyclopentadiene² (II) have been prepared by reaction of I,4-dilithio-1,2,3,4-tetraphenylbutadiene with the appropriate dichlorosilane. 1,1-Dimethyl-1silacyclopentadiene³ (III) was obtained by the high temperature catalytic dehydrogenation of 1,1-dimethvl-1-silacvclopentane.

> (IV), R = Me, R' = Ph, R'' = H

We have previously reported that Diels-Alder reactions of $(I)^4$ and $(II)^2$ (with acetylenic dienophiles) provide access to the unusual and highly reactive 7-silanorbornadiene compounds. These latter bicyclic compounds are especially important in view of their use as possible precursors to "divalent silicon" (silene) species^{2,4,5}. A study of the preparation and properties of various silacyclopentadienes was important for an extension of the above^{2,4} studies concerned with polymers.

We are now reporting the preparation of I.I-dimethyl-2.5-diphenyl-I-silacyclopentadiene (IV). The reaction of styrene, dichlorodimethylsilane, and lithium has been reported⁶ to proceed readily in tetrahydrofuran to give 1,1-dimethyl-2,5diphenyl-I-silacyclopentane (V). In our hands this reaction also gave (V) as the major product (45 %), b.p. 139.5-140°/0.2 mm (Todd column), n²⁰ 1.5781 (lit. 6b 136-137°/ 0.2 mm, n_D^{20} 1.5768)*. G. p. c. analysis (Dow Corning silicone gum rubber column SE 30 at 290°) gave a single peak. However, the NMR spectrum of (V) (CCl₄, relative to cyclohexane standard) shows the presence of three different types of silicon-methyl groups with bands centered at 9.79, 10.13, and 10.64 τ in a 1:3:1 ratio, respectively. This spectrum is compatible with a cis-trans mixture of (V), and from peak intensities we estimate a trans/cis ratio of 1.5.

Treatment of the cis-trans mixture of (V) with two equivalents of N-bromosuccinimide gave a mixture of apparently isomeric 2,5-dibromo-1,1-dimethyl-2,5diphenyl-I-silacyclopentanes (VI), m.p. 90-100° decomp. (SS %)**. Refluxing the mixture (VI) in the presence of potassium acetate using acetonitrile as solvent gave the silacyclopentadiene (IV) (65%) (Found: Si, 10.82, 10.75. C18H18Si calcd.: Si, 10.70 %.)

Compound (IV) is a bright vellow-green solid, m.p. 132-133°. This compound exhibits a brilliant blue fluorescence in ultraviolet light in the solid state and shows the following ultraviolet absorption maxima (cyclohexane) in $m\mu$ (log ε): 370 (4.315), 230 (4.179)***.

J. Organometal. Chem., 2 (1964) 291-292

[&]quot; The workers in ref. 6b did not determine the position of the phenyl substituents in (V). For a reported dehydrogenation of this r, r-dimethyl-x, x'-diphenyl-r-silacyclopentane see ref. 3b.

This material was not isolated in an analytically pure state, but was utilized immediately

in subsequent reactions. *** These properties are to be compared with those reported² for 1,1-dimethyl-2,3,4,5-tetraphenyl-1-silacyclopentadiene (II): 357 (3.999), 247 (4.413).

The NMR spectrum of (IV) (CCl₄) shows, in addition to the aromatic multiplet, a sharp silicon-methyl singlet at 9.52 τ . The aromatic (olefinic proton included under this area)/aliphatic proton ratio was 2.01 (calcd. 2.00). The NMR spectrum (CCl₄) of the previously reported 1,1-dimethyl-2,3,4,5-tetraphenyl-1-silacyclopentadiene (II) also contains a silicon-methyl singlet at 9.52 τ . In this latter case the aromatic/ aliphatic proton ratio was 3.20 (calcd. 3.33).

Complete details of this work, including the preparation and properties of other silacyclopentadienes will be reported later.

Acknowledgment

This research was partially supported by the United States Air Force under Contract AF 33 (616)-6463 monitored by the Materials Development Center, Wright-Patterson AFB, Ohio. The authors are grateful to Dr. R. KING for determination of the NMR spectra and for aid in their interpretation.

Department of Chemistry,		HENRY GILMAN
Iowa State University, Ames, Iowa ((U.S.A.)	WILLIAM H. ATWELL

- I (a) E. H. BRAYE AND W. HÜBEL, Chem. Ind. (London), (1959) 1250;
- (b) E. H. BRAYE, W. HÜBEL AND I. CAPLIER, J. Am. Chem. Soc., 83 (1961) 4406.
- 2 H. GILMAN, S. G. COTTIS AND W. H. ATWELL, J. Am. Chem. Soc., 86 (1964) 1596.
- 3 (a) J. GROUBEAU, T. KOLMAR AND H. HOFMAN, Ann. Chem., 659 (1962) 39; (b) O. M. NEFEDOV AND M. N. MANAKOV, Bull. Acad. Sci. USSR, Div. Chem. Sci., (1963) 695.
- 4 H. GILMAN, S. G. COTTIS AND W. H. ATWELL, J. Am. Chem. Soc., 86 (1964), in the press.
- 5 See also: (a) P. S. SKELL AND E. J. GOLDSTEIN, J. Am. Chem. Soc., 86 (1964) 1442:
 (b) O. M. NEFEDOV AND M. N. MANAKOV, Angew. Chem., Intern. Ed. Engl., 3 (1964) 226.
 6 (a) D. R. WEYENBERG, L. H. TOPORCER AND M. J. NAPOLI, Abstr. Fall Meeting Am. Chem. Soc.,
- Chicago, Illinois (1961) p. 31Q: (b) O. M. NEFEDOV, M. N. MANAKOV AND A. D. PETROV, Izv. Akad. Nauk SSSR, Old. Khim.
 - Nauk, (1962) 1228; Chem. Abstr., 58 (1962) 5713.

Received May 25th, 1964

J. Organometal. Chem., 2 (1964) 291-292